A Sheaf Model of the Algebraic Closure
نویسندگان
چکیده
In constructive algebra one cannot in general decide the irreducibility of a polynomial over a field K. This poses some problems to showing the existence of the algebraic closure of K. We give a possible constructive interpretation of the existence of the algebraic closure of a field in characteristic 0 by building, in a constructive metatheory, a suitable site model where there is such an algebraic closure. One can then extract computational content from this model. We give examples of computation based on this model.
منابع مشابه
Fuzzy Acts over Fuzzy Semigroups and Sheaves
lthough fuzzy set theory and sheaf theory have been developed and studied independently, Ulrich Hohle shows that a large part of fuzzy set theory is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...
متن کاملScheme representation for first-order logic
Recall that every commutative ring R determines an affine scheme in algebraic geometry. This consists of two components: a topological space Spec(R) (the spectrum) and a sheaf of local rings OR (the structure sheaf). In this way, a scheme encodes both geometric and algebraic data. In this work, we present a construction of “logical schemes,” geometric entities which represent logical theories i...
متن کاملCharacter Sheaves and Generalized Springercorrespondenceanne - Marie
Let G be a connected reductive algebraic group over an algebraic closure of a nite eld of characteristic p. Under the assumption that p is good for G, we prove that for any character sheaf A on G, there exists a unipotent class C A canonically attached to A, such that A has non-zero restriction on C A , and any unipotent class C in G such that A has non-zero restriction on C has dimension stric...
متن کاملA Semicontinuity Result for Monodromy under Degeneration
We x a a prime number l. We denote by E a nite extension of Ql inside a chosen algebraic closure Ql of Ql, by O the ring of integers in E , by F its residue eld, and by F an algebraic closure of F . We take as coeÆcient eld A one of the elds on the following list: F , F , E , or Ql. We work over a eld k in which l is invertible. We are given a smooth connected k-scheme S=k, separated and of nit...
متن کاملP-CLOSURE IN PSEUDO BCI-ALGEBRAS
In this paper, for any non-empty subset C of a pseudo BCI-algebra X, the concept of p-closure of C, denoted by C(pc), is introduced and some related properties are investigated. Applying this concept, a characterization of the minimal elements of X is given. It is proved that C(pc) is the least closed pseudo BCI-ideal of X containing C and K(X) for any ideal C of X...
متن کامل